Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.824
Filtrar
1.
J Chromatogr A ; 1722: 464872, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581975

RESUMEN

LC-MS is an indispensable tool for small molecule analysis in many fields; however, many small molecules require chemical derivatization to improve retention on commonly used reversed-phase columns and increase ionization. Benzoyl chloride (BzCl) derivatization is commonly used for derivatization of primary and secondary amines and phenolic alcohols, though evidence exists that with proper reaction conditions (i.e., specific bases), other hydroxyl groups may be derivatized too. Previous studies have examined BzCl concentration, reaction times, and reaction temperatures for derivatization of amines and phenols for LC-MS analysis; however, use of different bases, base concentration, and extending to conditions to hydroxyl groups for LC-MS analysis has not been well-studied. To address this understudied area and identify reaction conditions for both amino and hydroxyl groups, we performed a systematic study of reaction conditions on multiple classes of potential targets. For selected derivatization methods, detection limits and performance in a variety of biological matrices were assessed. Results highlight the importance of tailoring derivatization methods for a given application as they varied by molecule and/or molecule class. Compared to the standard BzCl method commonly used, alternative methods were identified to better derivatize challenging analytes (glucosamine, choline, cortisol, uridine, cytidine) with detection limits reaching 1100, 9, 38, 170, and 67 nM compared to undetectable, 170, 86, 1000, and 86 nM respectively. Sub-nanomolar detection limits were achieved for norepinephrine with alternative derivatization approaches. Improved derivatization methods for several classes and molecules including nucleosides, steroids, and molecules containing hydroxyl groups were also identified.


Asunto(s)
Benzoatos , Espectrometría de Masas , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Límite de Detección , Humanos , Aminas/análisis , Aminas/química , Colina/análisis , Colina/química , Hidrocortisona/análisis , Hidrocortisona/química , 60705
2.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652115

RESUMEN

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Asunto(s)
Simulación de Dinámica Molecular , Extractos Vegetales , Neoplasias del Cuello Uterino , Factor A de Crecimiento Endotelial Vascular , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Medicina de Precisión/métodos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Unión Proteica , Simulación del Acoplamiento Molecular
3.
Trends Pharmacol Sci ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641489

RESUMEN

RNA has diverse cellular functionality, including regulating gene expression, protein translation, and cellular response to stimuli, due to its intricate structures. Over the past decade, small molecules have been discovered that target functional structures within cellular RNAs and modulate their function. Simple binding, however, is often insufficient, resulting in low or even no biological activity. To overcome this challenge, heterobifunctional compounds have been developed that can covalently bind to the RNA target, alter RNA sequence, or induce its cleavage. Herein, we review the recent progress in the field of RNA-targeted heterobifunctional compounds using representative case studies. We identify critical gaps and limitations and propose a strategic pathway for future developments of RNA-targeted molecules with augmented functionalities.

4.
Zhongguo Zhong Yao Za Zhi ; 49(3): 661-670, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621870

RESUMEN

Scorpions, a group of oldest animals with wide distribution in the world, have a long history of medicinal use. Scorpio, the dried body of Buthus martensii, is a rare animal medicine mainly used for the treatment of liver diseases, spasm, and convulsions in children in China. The venom has been considered as the active substance of scorpions. However, little is known about the small molecules in the venom of scorpions. According to the articles published in recent years, scorpions contain amino acids, fatty acids, steroids, and alkaloids, which endow scorpions with antimicrobial, anticoagulant, metabolism-regulating, and antitumor activities. This paper summarizes the small molecule chemical components and pharmacological activities of scorpions, with a view to providing valuable information for the discovery of new active molecules and the clinical use of scorpions.


Asunto(s)
Animales Venenosos , Antiinfecciosos , Venenos de Escorpión , Animales , Niño , Humanos , Péptidos/química , Escorpiones/química , Escorpiones/metabolismo , ADN Complementario , Venenos de Escorpión/farmacología
5.
Biomed Pharmacother ; 174: 116593, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626521

RESUMEN

Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.

6.
Br J Haematol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577716

RESUMEN

Multiagent chemoimmunotherapy remains the standard of care treatment for Burkitt lymphoma leading to a cure in the majority of cases. However, frontline treatment regimens are associated with a significant risk of treatment related toxicity especially in elderly and immunocompromised patients. Additionally, prognosis remains dismal in refractory/relapsed Burkitt lymphoma. Thus, novel therapies are required to not only improve outcomes in relapsed/refractory Burkitt lymphoma but also minimize frontline treatment related toxicities. Recurrent genomic changes and signalling pathway alterations that have been implicated in the Burkitt lymphomagenesis include cell cycle dysregulation, cell proliferation, inhibition of apoptosis, epigenetic dysregulation and tonic B-cell receptor-phosphatidylinositol 3-kinase (BCR-PI3K) signalling. Here, we will discuss novel targeted therapy approaches using small molecule inhibitors that could pave the way to the future treatment landscape based on the understanding of recurrent genomic changes and signalling pathway alterations in the lymphomagenesis of adult Burkitt lymphoma.

7.
Angew Chem Int Ed Engl ; : e202405405, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578834

RESUMEN

The surface frustrated Lewis pairs (SFLPs) open up new opportunities for substituting noble metals in the activation and conversion of stable molecules. However, the applications of SFLPs on a larger scale are impeded by the complex construction process, low surface density, and sensitivity to the reaction environment. Herein, wurtzite-structured crystals such as GaN, ZnO, and AlP are found for developing natural, dense, and stable SFLPs. It is revealed that the SFLPs can naturally exist on the (100) and (110) surfaces of wurtzite-structured crystals. All the surface cations and anions serve as the Lewis acid and Lewis base in SFLPs, respectively, contributing to the surface density of SFLPs as high as 7.26 × 1014 cm-2. Ab initio molecular dynamics simulations indicate that the SFLPs can keep stable under high temperatures and the reaction atmospheres of CO and H2O. Moreover, outstanding performance for activating the given small molecules is achieved on these natural SFLPs, which originates from the optimal orbital overlap between SFLPs and small molecules. Overall, these findings not only provide a simple method to obtain dense and stable SFLPs but also unfold the nature of SFLPs toward the facile activation of small molecules.

8.
Magn Reson Chem ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558418

RESUMEN

Configurational and conformational analysis of the biologically relevant natural product artemisinin was conducted using carbon-carbon residual dipolar couplings (1DCC RDCs) at natural abundance. These RDCs were measured through the 2D-INADEQUATE NMR experiment using a sample aligned in a compressed poly (methyl methacrylate) (PMMA) gel swollen in CDCl3. Singular value decomposition (SVD) fitting analysis of all carbon-carbon bonds, 1DCC RDCs, in relation to the full configuration/conformational space (32 diastereoisomers) of artemisinin, unambiguously identified the correct configuration of artemisinin.

9.
Mol Biotechnol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613722

RESUMEN

Ferroptosis is a unique form of cell death reliant on iron and lipid peroxidation. It disrupts redox balance, causing cell death by damaging the plasma membrane, with inducers acting through enzymatic pathways or transport systems. In cancer treatment, suppressing ferroptosis or circumventing it holds significant promise. Beyond cancer, ferroptosis affects aging, organs, metabolism, and nervous system. Understanding ferroptosis mechanisms holds promise for uncovering novel therapeutic strategies across a spectrum of diseases. However, detection and regulation of this regulated cell death are still mired with challenges. The dearth of cell, tissue, or organ-specific biomarkers muted the pharmacological use of ferroptosis. This review covers recent studies on ferroptosis, detailing its properties, key genes, metabolic pathways, and regulatory networks, emphasizing the interaction between cellular signaling and ferroptotic cell death. It also summarizes recent findings on ferroptosis inducers, inhibitors, and regulators, highlighting their potential therapeutic applications across diseases. The review addresses challenges in utilizing ferroptosis therapeutically and explores the use of machine learning to uncover complex patterns in ferroptosis-related data, aiding in the discovery of biomarkers, predictive models, and therapeutic targets. Finally, it discusses emerging research areas and the importance of continued investigation to harness the full therapeutic potential of targeting ferroptosis.

10.
Curr Top Med Chem ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38591202

RESUMEN

Quinolone is a heterocyclic compound containing carbonyl at the C-2 or C-4 positions with nitrogen at the C-1 position. The scaffold was first identified for its antibacterial properties, and the derivatives were known to possess many pharmacological activities, including anticancer. In this review, the quinolin-2(H)-one and quinolin-4(H)-one derivatives were identified to inhibit several various proteins and enzymes involved in cancer cell growth, such as topoisomerase, mi-crotubules, protein kinases, phosphoinositide 3-kinases (PI3K) and histone deacetylase (HDAC). Hybrids of quinolone with curcumin or chalcone, 2-phenylpyrroloquinolin-4-one and 4-quinolone derivatives have demonstrated strong potency against cancer cell lines. Additionally, quinolones have been explored as inhibitors of protein kinases, including EGFR and VEGFR. Therefore, this review aims to consolidate the medicinal chemistry of quinolone derivatives in the pipeline and discuss their similarities in terms of their pharmacokinetic profiles and potential target sites to provide an understanding of the structural requirements of anticancer quinolones.

11.
Expert Opin Pharmacother ; : 1-15, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591242

RESUMEN

INTRODUCTION: Despite the growing number of highly efficacious biologics and chemical drugs for ulcerative colitis (UC), steroid-free disease control is still difficult to achieve in subgroups of patients due to refractoriness, adverse events, primary or secondary failure. New treatments are therefore still required in order to optimize clinical management of patients with UC. AREAS COVERED: The efficacy and safety of both currently available and newly developed small molecules have been summarized. The PubMed database and clinicaltrials.gov were considered in order to search for phase 2b and 3 trials on new chemical drugs for UC. The study drugs reviewed included Janus kinases (JAK) and sphingosine-1-phosphate receptor (S1Pr) inhibitors, α4 integrin antagonist, and micro-RNA-124 upregulators. EXPERT OPINION: Rapidity of onset, low immunogenicity, and safety are the main characteristics of small molecules currently available or under evaluation for treatment patients with UC. Among the currently available chemical drugs, the selective JAK and the S1Pr inhibitors are characterized by a good safety profile combined with the ability to induce clinical remission in UC. A relatively low frequency of endoscopic improvement and healing currently appears associated with their use, being higher in UC patients treated with S1Pr inhibitor Etrasimod. Overall, additional new safe and effective drugs are still required in order to optimize disease control in a larger majority of UC patients.

12.
J Mol Neurosci ; 74(2): 40, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594388

RESUMEN

Astrocytes, the most prevalent cells in the central nervous system (CNS), can be transformed into neurons and oligodendrocyte progenitor cells (OPCs) using specific transcription factors and some chemicals. In this study, we present a cocktail of small molecules that target different signaling pathways to promote astrocyte conversion to OPCs. Astrocytes were transferred to an OPC medium and exposed for five days to a small molecule cocktail containing CHIR99021, Forskolin, Repsox, LDN, VPA and Thiazovivin before being preserved in the OPC medium for an additional 10 days. Once reaching the OPC morphology, induced cells underwent immunocytofluorescence evaluation for OPC markers while checked for lacking the astrocyte markers. To test the in vivo differentiation capabilities, induced OPCs were transplanted into demyelinated mice brains treated with cuprizone over 12 weeks. Two distinct lines of astrocytes demonstrated the potential of conversion to OPCs using this small molecule cocktail as verified by morphological changes and the expression of PDGFR and O4 markers as well as the terminal differentiation to oligodendrocytes expressing MBP. Following transplantation into demyelinated mice brains, induced OPCs effectively differentiated into mature oligodendrocytes. The generation of OPCs from astrocytes via a small molecule cocktail may provide a new avenue for producing required progenitors necessary for myelin repair in diseases characterized by the loss of myelin such as multiple sclerosis.


Asunto(s)
Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Ratones , Animales , Esclerosis Múltiple/terapia , Esclerosis Múltiple/metabolismo , Astrocitos/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Línea Celular
13.
Inflamm Res ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587530

RESUMEN

INTRODUCTION: The approval of novel biologic agents and small molecules for the treatment of Crohn's disease (CD) and ulcerative colitis (UC) is dependent on phase 3 randomized controlled trials (RCTs). However, these trials sometimes fail to achieve the expected efficacy outcomes observed in phase 2 trials. METHODS: We conducted a systematic review of RCTs that evaluated biologic agents and small molecules using paired regimens in both phase 2 and phase 3. We searched Medline, EMBASE, and Cochrane databases up until February 13, 2024. The revised Cochrane tool was utilized to assess the risk of bias. A generalized linear mixed-effects model (GLMM) was employed to estimate the odds ratios (ORs) for efficacy outcomes in phase 2 trials compared to phase 3. RESULTS: We identified a total of 23 trials with 10 paired regimens for CD and 30 trials with 11 paired regimens for UC. The GLMM analysis revealed that phase 2 CD trials had higher outcomes measured by the Crohn's Disease Activity Index (CDAI) by 9-13% without statistical significance: CDAI-150: OR, 1.12 (95% CI 0.83-1.51, p = 0.41); CDAI-100: OR, 1.09 (95% CI 0.88-1.35, p = 0.40); or CDAI-70: OR, 1.13 (95% CI 0.61-2.08, p = 0.66). For UC, two efficacy outcomes were estimated to be equally reported in phase 2/phase 3 pairs: clinical remission: OR, 1.00 (95% CI 0.83-1.20, p = 0.96); endoscopic improvement: OR, 0.98 (95% CI 0.83-1.15, p = 0.79). However, the rate of clinical response was underestimated in phase 2 by 19%: OR, 0.81 (95% CI 0.70-0.95, p = 0.03). The inclusion criterion for the type of Mayo score for UC had a significant interaction with the study phase to influence the difference in clinical response (p = 0.002). CONCLUSIONS: Our findings suggest that the main efficacy outcomes for CD and UC remain consistent between phase 2 and phase 3 trials, except for UC response rates. The efficacy data obtained from phase 2 trials can be considered reliable for the design of subsequent phase 3 trials. REGISTRATION: PROSPERO (CRD42023407947).

14.
Biosystems ; 238: 105200, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565418

RESUMEN

One of the prime reasons of increasing breast cancer mortality is metastasizing cancer cells. Owing to the side effects of clinically available drugs to treat breast cancer metastasis, it is of utmost importance to understand the underlying biogenesis of breast cancer tumorigenesis. In-silico identification of potential RNAs might help in utilizing the miR-27 family as a therapeutic target in breast cancer. The experimentally verified common interacting mRNAs for miR27 family are retrieved from three publicly available databases- TargetScan, miRDB and miRTarBase. Finally on comparing the common genes with HCMDB and GEPIA data, four breast cancer-associated differentially expressed metastatic mRNAs (GATA3, ENAH, ITGA2 and SEMA4D) are obtained. Corresponding to the miR27 family and associated mRNAs, interacting drugs are retrieved from Sm2mir and CTDbase, respectively. The interaction network-based approach was utilized to obtain the hub RNAs and triad modules by employing the 'Cytohubba' and 'MClique' plugins, respectively in Cytoscape. Further, sample-, subclass- and promoter methylation-based expression analyses reveals GATA3 and ENAH to be the most significant mRNAs in breast cancer metastasis having >10% genetic alteration in both METABRIC Vs TCGA datasets as per their oncoprint analysis via cBioPortal. Additionally, survival analysis in Oncolnc reveals SEMA4D as survival biomarker. Interactions among the miR27 family, their target mRNAs and drugs interacting with miRNAs and mRNAs can be extensively explored in both in-vivo and in-vitro setups to assess their therapeutic potential in the diminution of breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Neoplasias de la Mama/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Biomarcadores de Tumor/genética , MicroARNs/genética , ARN Mensajero/genética
15.
EPMA J ; 15(1): 111-123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463620

RESUMEN

Inflammatory bowel disease (IBD) is a global health burden which carries lifelong morbidity affecting all age groups in populations with the disease-specific peak of the age groups ranging between 15 and 35 years, which are of great economic importance for the society. An accelerating incidence of IBD is reported for newly industrialised countries, whereas stabilising incidence but increasing prevalence is typical for countries with a Westernised lifestyle, such as the European area and the USA. Although the aetiology of IBD is largely unknown, the interplay between the genetic, environmental, immunological, and microbial components is decisive for the disease manifestation, course, severity and individual outcomes. Contextually, the creation of an individualised patient profile is crucial for the cost-effective disease management in primary and secondary care of IBD. The proposed pathomechanisms include intestinal pathoflora and dysbiosis, chronic inflammation and mitochondrial impairments, amongst others, which collectively may reveal individual molecular signatures defining IBD subtypes and leading to clinical phenotypes, patient stratification and cost-effective protection against health-to-disease transition and treatments tailored to individualised patient profiles-all the pillars of an advanced 3PM approach. The paradigm change from reactive medical services to predictive diagnostics, cost-effective targeted prevention and treatments tailored to individualised patient profiles in overall IBD management holds a promise to meet patient needs in primary and secondary care, to increase the life-quality of affected individuals and to improve health economy in the area of IBD management. This article analyses current achievements and provides the roadmap for future developments in the area in the context of 3P medicine benefiting society at large.

16.
Expert Opin Ther Pat ; 34(1-2): 17-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445468

RESUMEN

INTRODUCTION: Cysteine proteases are involved in a broad range of biological functions, ranging from extracellular matrix turnover to immunity. Playing an important role in the onset and progression of several diseases, including cancer, immune-related and neurodegenerative disease, viral and parasitic infections, cysteine proteases represent an attractive drug target for the development of therapeutic tools. AREAS COVERED: Recent scientific and patent literature focusing on the design and study of cysteine protease inhibitors with potential therapeutic application has been reviewed. EXPERT OPINION: The discovery of a number of effective structurally diverse cysteine protease inhibitors opened up new challenges and opportunities for the development of therapeutic tools. Mechanistic studies and the availability of X-ray crystal structures of some proteases, alone and in complex with inhibitors, provide crucial information for the rational design and development of efficient and selective cysteine protease inhibitors as preclinical candidates for the treatment of different diseases.


Asunto(s)
Proteasas de Cisteína , Enfermedades Neurodegenerativas , Humanos , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Cisteína Proteinasa/química , Patentes como Asunto , Inhibidores de Proteasas/farmacología , Antivirales/farmacología
17.
ACS Infect Dis ; 10(4): 1267-1285, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442370

RESUMEN

The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Quinolinas , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Sinergismo Farmacológico , Antiinfecciosos/farmacología , Quinolinas/farmacología
18.
Autoimmun Rev ; 23(5): 103533, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38521214

RESUMEN

Spondyloarthritis (SpA) is the most frequent extraintestinal manifestation in patients with inflammatory bowel diseases (IBD). When IBD and spondyloarthritis coexist, musculoskeletal and intestinal disease features should be considered when planning a therapeutic strategy. Treatment options for IBD and SpA have expanded enormously over the last few years, but randomized controlled trials with specific endpoints focused on SpA are not available in the IBD setting. To address this important clinical topic, the Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD) and the Italian Society of Rheumatology (SIR) jointly planned to draw updated therapeutic recommendations for IBD-associated SpA using a pseudo-Delphi method. This document presents the official recommendations of IG-IBD and SIR on the management of IBD-associated SpA in the form of 34 statements and 4 therapeutic algorithms. It is intended to be a reference guide for gastroenterologists and rheumatologists dealing with IBD-associated SpA.

19.
Adv Mater ; : e2312254, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38521992

RESUMEN

A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.

20.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543178

RESUMEN

The development of BRD9 inhibitors involves the design and synthesis of molecules that can specifically bind the BRD9 protein, interfering with the function of the chromatin-remodeling complex ncBAF, with the main advantage of modulating gene expression and controlling cellular processes. Here, we summarize the work conducted over the past 10 years to find new BRD9 binders, with an emphasis on their structure-activity relationships, efficacies, and selectivities in preliminary studies. BRD9 is expressed in a variety of cancer forms, hence, its inhibition holds particular significance in cancer research. However, it is crucial to note that the expanding research in the field, particularly in the development of new degraders, may uncover new therapeutic potentials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...